Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Micromachines (Basel) ; 14(3)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36984986

RESUMEN

The proposed lubrication theory of textured journal bearing is a major innovation in the study of the tribological properties of surface morphology. When it comes to the study of surface topography, it is essential to consider the effect of surface roughness when analyzing the characteristics of journal bearing. In this paper, a Reynolds equation containing longitudinal roughness is established for journal bearing and solved by the finite difference principle to obtain the bearing load and friction characteristics. Subsequently, a combination of laser etching and ultrasonic vibration milling processes was used to prepare 5 µm, 20 µm, and 40 µm bearing friction subsets with square micro-texture surfaces. The analysis of the results shows that the surface roughness distributed in the non-texture region can substantially increase the oil film pressure. When the roughness profile and the surface weave work together, the presence of a surface texture with an optimum depth of 5 µm within a roughness range of less than 1.6 µm can improve the load-bearing characteristics by a maximum of 43%. In the study of the preparation of textured bearing friction substrate, it was found that laser etching can ablate the surface of the friction substrate to a depth greater than 20 µm with the ideal effect, while the surface texturing to a depth of 5 µm is more suitable using an ultrasonic vibration processing process. In the simplified journal bearing operating condition, the frictional wear test shows that if the effect of roughness is considered, the frictional force of the depth of 20 µm and 40 µm is significantly reduced and changes less with increasing load, while the frictional force of the textured frictional pair with a depth of 5 µm is improved but significantly affected by the load carrying capacity. Therefore, when the difference between the roughness profile and the depth of the texture is of a small order of magnitude, it indicates that the effect caused by the roughness factor is not negligible.

2.
Micromachines (Basel) ; 14(1)2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36677283

RESUMEN

During the process of internal cylindrical ultrasonic-assisted electrochemical grinding (ICUAECG), both the workpiece and the conductive grinding wheel are rotating, the machining space is closed and narrow, the electrolyte is difficult to spray into the machining area, and the insulation between the workpiece and the machine bed is challenging. According to the machining characteristics of ICUAECG, the structure of a special machine tool was designed to mitigate these problems. In particular, the rotation, electrolyte supply, electric connection, and insulation modes of the workpiece clamping parts were studied, yielding a novel workpiece clamping- and rotating-device design. This structure can fully use the internal space of the hollow spindle of the machine tool, effectively reduce the external moving parts, and achieve the appropriate liquid injection angle of the electrolyte. The ultrasonic vibration system and its installation mechanism, the dressing device of the conductive grinding wheel, and the electric grinding spindle-mounting and -fixing device were analyzed in detail. Then, a special machine tool for ICUAECG was designed, the operability and feasibility of which were verified by experiments involving conductive grinding wheel dressing and ICUAECG.

3.
Micromachines (Basel) ; 13(11)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36363847

RESUMEN

This study used a forming grinding wheel to machine an involute spur gear with ultrasonic vibration applied to the gear in order to improve the gear processing technology and enhance the gear processing effect. Conventional grinding and ultrasonic vibration-assisted forming grinding gear (TUVA-FGG) tests were carried out. The effects of grinding parameters, such as spindle speed, feed rate, radial grinding depth, and ultrasonic amplitude, on grinding force, grinding temperature, residual stress, surface roughness, and surface morphology were analyzed. The TUVA-FGG significantly improved processing efficiency. With the increase in spindle speed, the maximum reductions in the normal and tangential grinding forces, grinding temperature, and surface roughness reached 33.6, 24.5, 23.9, and 21.6%, respectively. With the increase in feed rate, the respective maximum reductions were 21.4, 19.7, 20.3, and 16.1%. With the increase in radial grinding depth, these values attained 24.6, 20.3, 21.5, and 17.6%, respectively. Finally, with the increase in ultrasonic amplitude, these reductions reached 21.4, 19.7, 21.5, and 19.4%. The maximum residual compressive stress grew by 30.3, 27.5, 30.9, and 27.5% with the increase of wheel rotation speed, feed speed, radial grinding depth, and ultrasonic amplitude, respectively. TUVA-FGG changed the conventional continuous cutting mechanism between the abrasive grain and workpiece into intermittent cutting, reducing grinding forces, grinding temperature, and surface roughness. Moreover, it increased residual compressive stress and improved the micromorphology of the tooth surface, thus enhancing gear machining efficiency.

4.
Materials (Basel) ; 15(2)2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35057353

RESUMEN

This study aimed to explore the evolution of surface properties of nanocomposite ceramics during ultrasonic vibration-assisted electrolytic in-process dressing (UVA-ELID) grinding. First, the trajectory of the grain was analyzed, and the motion was simulated using MATLAB to demonstrate the mechanism of UVA-ELID grinding. The critical grinding depth was also calculated under the effect of ultrasonic vibration. Then, the conventional ELID (C-ELID) and UVA-ELID grinding were compared. The surface properties, including surface residual stress, surface microstructure, surface roughness, and surface morphology, were used to evaluate the effectiveness and feasibility of UVA-ELID grinding. Whether it was conventional C-ELID or UVA-ELID grinding, the residual compressive stress was introduced into the machined surface, while the former was lower than the latter. The microstructure of the UVA-ELID grinding was evenly distributed, and the ductility removal occurred during material removal. The surface roughness of Ra and Rz was reduced by 14.5% and 20.6%, respectively, during the UVA-ELID grinding. The surface morphology was dramatically changed with the help of ultrasonic vibration. In a word, for nanocomposite ceramic, the UVA-ELID grinding can significantly improve surface performance and achieve a better machining effect.

5.
Materials (Basel) ; 14(19)2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-34640005

RESUMEN

Ultrasonic-assisted electrolytic in-process dressing (UA-ELID) grinding is a promising technology that uses a metal-bonded diamond grinding wheel to achieve a mirror surface finish on hard and brittle materials. In this paper, the UA-ELID grinding was applied to nanocomposite ceramic for investigating the cavitation effect on the processing performance. Firstly, the ultrasonic cavitation theory was utilized to define the cavitation threshold, collapse of cavitation bubbles, and variation of their radii. Next, the online monitoring system was designed to observe the ultrasonic cavitation under different ultrasonic amplitude for the actual UA-ELID grinding test. A strong effect of ultrasonic cavitation on the grinding wheel surface and the formed oxide film was experimentally proved. Besides, under the action of ultrasonic vibration, the dressing effect of the grinding wheel was improved, and the sharpness of grain increased by 43.2%, and the grain distribution was dramatically changed with the increase of ultrasonic amplitude. Compared with the conventional ELID (C-ELID) grinding, the average protrusion height increased by 14.2%, while the average grain spacing dropped by 21.2%. The UA-ELID grinding reduced the workpiece surface roughness Rz and Ra by 54.2% and 46.5%, respectively, and increased the surface residual compressive stress by 44.5%. The surface morphology observation revealed a change in the material removal mechanism and improvement of the surface quality by ultrasonic cavitation effect. These findings are considered instrumental in theoretical and experimental substantiation of the optimal UA-ELID grinding parameters for the processing of nanocomposite ceramics.

6.
Ultrasonics ; 98: 7-14, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31146174

RESUMEN

The vibrational characteristics of ultrasonic vibration system play an important role in the stability and processing effect in ultrasonic machining. In this study, a theoretical analysis and experimental verification were employed to investigate the effect of the thermo-mechanical load on the vibrational characteristics of ultrasonic vibration system. Initially, a dynamic model was designed to analyze the influence of the thermo-mechanical load on the vibration characteristics. Based on the model, the single variable method was adopted to explore the effect of different mechanical loading and the rigidity coefficient of the tool on the vibrational characteristics. Then the experiment was conducted by imposing variable loads on the tool end face, and the amplitude, current, frequency and temperature of ultrasonic system were measured. Finally, the ultrasonic vibration drilling test was conducted to verify the experimental results. It was observed that the ultrasonic amplitude initially increased and later decreased with the increase in static load. In addition, with the increase in static load, the thermal effect was significant and the ultrasonic frequency presented a similar tendency, as the ultrasonic amplitude. Meanwhile, the variation of ultrasonic frequency was not significant under the thermo-mechanical load. The results of this study could provide a favorable reference in the design of an ultrasonic vibration system and selection the different tools in ultrasonic machining.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...